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By J. Mayers and Bermard Budiansky
SUMMARY

An analysis 1s presented of the postbuckling behavior of a simply
supported, square flat plate with straight edges compressed beyond the
buckling load into the plastic range. The method of analysis involves
the application of a variational principle of the deformation theory
of plasticity in conjunction wilth computations carried out on a high-
speed calculating machine. Numerical results are obtained for several
plate proportions and for one material. The results indicate plate
strengths greater than thosge that have been found experimentally on
plates that do not satisfy straight-edge conditions.

INTRODUCTION

The determination of the load-carrying capaclity of a plate sub-
Jected to loads in 1ts plane depends upon a knowledge of the behavior
of the plate in the postbuckled range. Postbuckling anaslyses of plates
have for the most part been based on purely elastic considerations.
However, the relatively thick plate elements used in modern aircraft
structures mey generally be expected toc undergo plastic deformstions
prior to fallure of the components that they constitute. Consequently,
the theoretical determination of the loads that such plates can support
requires the incorporation of plasticity theory into a large-deflection
postbuckling analysis.

Many authors have investigated the elastic postbuckling behavior
of flat plates in compresslon; the more widely known of these investi-
gatlons are references 1 to 11. The basic differential equations for
a plate element undergoing large deflections are derived by Von Kérmén
in reference 1. In reference 2, Von KArmén introduces the concept of
the effective width of postbuckled plates. Various approximate solu-
tions for postbuckling behavior are presented in references 3, k4, 5,
and 6 by Cox, Timoshenko, Marguerre and Trefftz, and Marguerre,
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respectively, where analyses are carriled out by energy methods. In
reference 7, Kromm and Marguerre obtain very accurate results at moder-
ately exceeded buckllng loads for simply supported, infinitely long
plates in compression by extending the investigations of references 5
and 6. An essentlally exact solution for square plates in compression
1s presented by Levy in reference 8, where the large-deflection equa-
tions of reference 1 gre solved to a high degree of approximation by
means of Fourlier series. In reference 9, Kolter improves the results
of reference 7 to make them applicable far beyond buckling; in addition,
results are presented for clamped plates. The effecis of initiel
deviations from flatness for squere plates are investigated by Hu,
Iundquist, and Batdorf in reference 10 and by Coan 1n reference 11 by
means of the method of solution advanced in reference 8. In reference 10,
the side edges of the plate are constrained to remain straight, whereas,
in reference 11, the side edges are free to distort in the plane of the
plate.

The large number of 1lnvestigations of the elastlic postbuckling
problem and the fact that solutions can be obtalned only by epproximate
methods indicate to some extent the unwleldiness of the nonlinear, large-
deflection equations involved in the postbuckling problem. The lack of
solutions to the corresponding inelasstic problem appears to be a conse-
quence not only of 1ts large-deflection aspects but also of nonlinearity
in the stress-strain relations. The inelastic problem is further compli-
cated by the fact that some guestion exists as to the appropriate plastic
stress-strain law applicable to the states of comblned stress involved
in the problem.

In recent years, much work has been done in formulating variational
principles for theorles of plasticity. At the same time, great advances
have been made in the development of high-speed computing mechines. The
use of a variational principle in conjunction with calculations performed
on a high-speed computer appears to offer a feaslble approach to the
solution of the inelastic postbuckling problem. In the present paper,
this approach is used to determine the behavior of en aluminum-alloy,
simply supported, square flat plate with edges constralined to remain
straight, compressed beyond the (elsstic) buckling stress into the
plastic range. The variational principle used applies to the simple
deformation theory of plasticity and the calculations were made on the
Standards' Eastern Automatic Computer (SEAC) of the National Bureau of
Standards.

The results of the analysis are presented in the form of curves
showing the variatlon of deformations, stress distribution, average
compressive stress, and effective width with the spplied unit shertening.
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SYMBOLS
E Young's modulus for plate materisl
Eg secant modulus
M, My bending moments per unit length
MKY twisting moment per unit length
U strain energy of plate
V' volume of plate
b plate dimension in x- and y-direction
bea effective width of plate
e unit shortening applied to plate
€ap compresgsive buckling strain or shortening
g unit displacement of plate slde edges
h overall thickness of two-element plate measured
between center lines of faces,
i, m, n, p, g integers
t thickness of homogeneocus or solid plate
te thickness of face of two-element plate
u, v, w displacement of point onr middle surface of plate in
X-, y-, and z~direction, respectively
X, ¥, Z plate coordinates (see fig. 1)
7xy' middle-surface shear strain
7xy" twisting strain

total shear strain in xy-plane
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€aff effective strain, J%:JLXE + ey2 + €x€y + 7??2

€x ' ey' middle-surface strains in x- and y-direction,
respectively

€'y ey" bending straine in x- and y-direction,
respectively

€ys €y total components of strain in x- and y-direction,
respectively

g nondimensional lateral coordinate, 2x/b

n nondimensional axial coordinate, 2y/b

51 Polgson's ratio for plate msterial

Oav average compressive stress

Ocy compressive yleld stress of material

Oor compressive buckling stress

Oaff effective stress, \/qxe + oye - Oy0y + 3Txy2

Oxs Oy components of gtress in x- and y-direction,
regpectively

Bk’ By locel average axlal and lateral stresses

?xy local average shear stress

Txy shear gtress In xy-plane

Subscripts:

t top face of two-element plate

b bottom face of two-element plete
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THEORY

Statement of the Problem and Basic Assumptions

The problem under consideration is to determine the behavior of a
square flat plate compressed unidirectionally beyond the elastic buckling
stress into the range where plastic yielding of the material takes place.
All edges of the plate are assumed to remain in the originel plane of
the plate and to have vanishing bending moments. The plate ls consldered
to be subJected to & uniform shortening by means of a palr of rigid,
frictionless loading platens; thus, the loaded edges remain straight and
free of tangentiael stresses. The side edges - those parsllel to the
direction of loading - are essumed to be held straight but are free to
translate laterally and are devold of tangentlal stresses. The plate
is further assumed (fig. 1) to consist of two stress-carrying faces only,
the stresses being constant through the thickness of each face. The
effects of finite transverse shear stiffness, however, are neglected.

The cholce of aspect ratio and edge conditions for the plate 1s
baged upon the observed behavior of an interior bay of a multiple-bay
stiffened panel immedistely after buckling. In general, nearly square
buckles form in the skin, and the number of buckles in the longitudinal
directlon tends to persist In the postbuckling range; thus, the buckles
tend to remaln nearly square. The behavior 1s somewhat different in
the case of the truly infinitely long plates analyzed in references 7
and 9 where 1t is shown that the buckles tend to shorten 1n the direc-
tion of locading as the load ls increased. The restriction to square
buckles made in the present paper is therefore considered to spply to
panels that are long enough for nearly square buckles to be formed but
not 8o long that the number of buckles can readily change.

The two-element configuration assumed for the plate is incorporated
into the problem in order to eimplify the analysis by meking it inde-
pendent of the effects of plastiecity through the thickness of the plate.

The questlion of what is the correct relation between stresses and
strains under combined stresses in the plastic region is at present
quite unsettled. The litersture contains analyses of plastic buckling
(see refs. 12 and 13) thet have been carried out, with evident success,
on the basis of the simple secant-modulus deformation theory of plas-
ticity. On the other hand, serious doubts exlst concerning the legit-
imacy of applying this theory when, as in buckling, the stresses may
deviate sharply from so~called "proportional loading'" - loasding in which
the components of stress at any point remein proportional to one another.
A considergble controversy on this subject which will not be delved into
in this paper hes arisen. The course followed 1n this report is to use
deformation theory but to consider plates that buckle elasstically. In
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such cases, where the postbuckled configuration has had an opportunity

to begin to develop elastically, the stress history in the plastic range
would not involve widespresd, sudden deviations from proportional loading;
consequently, simple deformation theory may be used with some degree of
conf'idence.

In the present paper, Poisson's ratio is assumed to be equel to 1/2
in both the elastic and plastic domains; hence, material compressibility
is neglected. According to the secant-modulus theory for an incompress-
ible material, the relationship between the instantaneous gtates of
stress and strain at any point in the plate is given by

_k 1)
GX_EES €x+'2"€y
= =X 1
9% = 3 Eséﬁy'+ 5 €g>$' (1a)
Tyy = = E_ Y
Xy Tz UsIXY y.
or
- L -
SREACREL)
B AR 1b
Ey E <Gy 2 UX> ( )
=}
- 2
Tey TE W
The quantity E; 1s defined by the relaticnshlp
o
By = —2£L (2)
Ceff
where UOgpf ig an effective local stress given by
Oafp = Jok2 + oye - 00y + §Txy2 (%)
and eqpp 15 an effective local strain given by
y 2
_ .2 2 2 Xy
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The effectlive stress and straln are related by the uniaxial stress-
strain curve of the materisl. Thus, Eg; can be determined by entering

the uniaxial stress-strain curve with eilither Oeff OF Egpp-

Equations (1) are strictly applicable at any point in the plate
only if the effective stress and strain at that point have never
decreased while in the plastic range. The use of eguations (1) for
any stress history corresponds to a nonlinear elastic material whose
uniaxial loading and unloading stress-strain curves are identical. The
present solution wlll be actually carried out for this hypothetiecal
material by assuming equation (1) to apply always, and the applicability
to the plagtic material will then be assessed a posteriorl by examining
whether the effective straln doeg indeed increase monotonically once it
enters the nonlinear range.

Basic Equations

In the present paper, the displacements u, v, and w of the
middle surface (see fig. 1) will be considered as the basic unknowns
to be sought. Since, after buckling, the displacement w can no
longer be considered smell in comparison wilith the plate thickness, the
postbuckling problem requlres application of finite-~deflection theory
to describe the relationships between strains and displacements.

From reference 4, the expressions relating middle-surface strains

and displacements are
er_a_u+;<5_W>2 )
' =
ox 2\0x

. dv . 1[ow\e
% T " 5@;) > (52)

- u_l..a_v-[-.a_wa_w

Txy T dy Ox Ox By)

The bending end twlsting strains acting throughout the thickness of a
plate element are obtained from reference L as

N
& n = Z éa—w
X dx2
no o_ 82w
€y = 2 §§§ ? (5b)
"no_ 82w
Txy T B % |
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where 2z, In general, 1s the distance from the middle surface. In the
case of the two-element plate, =z 1is taken to be -t%, the distances

from the middle surface to the medlan surfaces of the faces.

With the use of the subscripts t and b to denote the top and
bottom faces, respectively, the face strains can now be written as

\
- 9u . 1l/ow h 05w
ext;b ox ¥ 2@}{) * 2 dxe
_ v, 1(ow\2 , h % 6
¥¢,5  dy i 2@y> I3 dy2 e (6)
y _Ou _, OV, OW oW 4+ %
e, By Bx ox Jdy ox az

The stress-strain relations (eqs. (1a)), in conjunction with the strain-
displacement relations (egs. (6)), give the stresses in the top and
bottom faces as

. :l‘l’.E Q.E+_1;§_‘£+l<§-ﬂ) ;(ﬂ)g i‘ﬂﬁ+;_aiw_

*t,b 3 Ft,blox 293y 2[\ox 20y) | T 2lax2 2oy
_Lp  Jdv, 13w ;Z_w> ;@)27+gﬁ+;ﬁ>

Yt,0 0 3 Bt,b ay+eax+ 2|\3 2\ T2y 23 ()
_1 du . Ov . dw v 4 , 0%

Txb’-b,b 3 Est,b<8y i ax dx dy ox ay>

Here Eg and E b are considered to be functions of

2
7th
and
y 2
_ 2 2 Xy :
Cerry = \]% Sy eyt exbeyb + m (8b)

respectlvely.
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The local bending moments produced in the plate by the face stresses

are simply

}«g{:

(9

I
&
ct

M,
Mx“f'=<T}Q’-t_T

h
xyb>2 te

and the average stresses at any point in the plate are

The conditions of equilibrium in the x-, y-,

vield (see ref. k)

By,

~

I
xQ
|

- %@x’c " be)
%(gyt * be)

_1
W-Q@%+T

(10)

~

g =

-1

XYQ).J

and z-direction

(11a)

(11p)

Pv . éew

ax2 Bx By

(11le)

2T
dy2 dx? Bya Sx dy

where 2tp, the stress-carrying thickness of the two-element plate, is

used in place of the thickness

in reference L.

t of the homogeneous plate considered

The boundary conditione stipulated for the present problem are as

follows:

The prescribed unit shortening e requires that

u(?%,y) = ;e% (12)



10 NACA TN 3368

The condition that the side edges remain straight 1s
v(x,-_l;%) = Constant (13)

The reguirement that the slde edges be free to translate is

f-' Zi ay<x,w:2 dx = 0 (1h)

The condition that the tangentlal stresses vanigh on each face is
written

?xyég,y = ?xy<x,"_'%> =0 (15)
Finally, the slmple-support conditions stipulate that
w@g.,y> - w<x,".:%> =0 (16)
and
(12,7) = 1y (1,1 = © (17)

Now, the differential equations (11), together with the boundary
conditions (eqs. (12) to (17)), may be considered to constitute the
complete statement of the problem in terms of the displacements u, v,
end w. That is, through the use of equations (6) to (11l) and by spec~
1fication of the uniaxial stress-strain curve, the dfferential equa-
ticns (11} could, in principle, be reduced to a set of three differ-
ential equations in v, v, end w. Simllarly, the boundary conditions
depend, implicitly, only on the displacements. An alternative formu-
lation of the problem, less natural but more attractive, 1s presented
in the next section by means of a variational principle.



NACA TN 3368 11

Variational Principle

The strain energy of stretching and bending for the two-element
plate 1s
b/2 pb/2
f f fxtoxde +f€yt0'ydey+
-b/2 v -p/2 t Jo ' T
Ty, b/2 ,b/2 €xp
T dy dx dy + tf\jp \jp J[‘ Oy dey +
fo RS b/2J /2 b b

€ 7
Yo f o,
de, + Ty, & dx 18
fo o o T, sy Vs, dy (18)

It can be readily verified from equations (1) to (4) that

o, dey + oy dey t Ty dyxy = Oopr Q€app (19)

Thus, the strain-energy expression may be written

b/2 ~b/2 s €
g [ TR e, s, + [ ey e, ) e o
/2 b2 t t Jo b b

(20)

As a result, in each face of the plate, the strain-energy density at =&
given point is simply the aree under the uniexiazl stress-strain curve

up to the effective strain level at the point. According to the
principle of minimum potential energy for deformation theories (ref. 14),
a solution of the present problem renders the strain energy U =a
relative minimum. Stated precisely, &U = 0 with respect to admissible
variations in wu, v, and w. By admlssible variations are meant varia-
tions that do not violate the geometrical boundary conditions of the
problem; in the present problem, the geometrical boundary conditions

are given by equations (12), (13), and (16). It is important to note
that the variastions in displascements need not satisfy the remaining
so-called natural boundary conditions (egs. (14}, (15), and (17)).

Although the minimum-potential-energy principle of reference 1k is
formulated for small-deflectlon theory, its use in the present problem
is valid. It 1s shown in appendix A, by means of the calculus of varia-
tions, that minimization of the strain energy U with respect to
admissible variations in displacements leads to satisfaction of the
correct differential equations of equilibrium and the natural boundary
conditions.
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Method of Solution

The solution of the present problem is found approximately by
using the Rayleigh-Rltz procedure in conjunction with the varilational
principle discussed In the preceding section. Expressions for the
unknowns u, Vv, and w are assumed to be in the following form:

=] [oa]
w=b > _ > Wy, COs HX cos L (21)
m=1,%... n=1,%... b b
[-e) 224 2
u = -ex + bZZ: ZZ:upq sin ZPX oo 21 (22)
p=1 g=0 b v
< 2pr 2
v = fy + bjz: ;E:qu cos X gin XY (23)
p=0 g=1 v ®

These expressions satisfy all the geometrical boundary conditions of
equations (12), (13), and (16); e is the magnitude of the prescribed
unit shortening and the unknown coefficlents wp,, g and Vpq

remain to be determined from the variational principle. In practice,
the solution was limited to the determination of only the slx unknown
coefficients wyy, w9, w13, T, vp1, and vqy.

In the special case of elastic behavior, where ogpep 1s & linear
function of e py and E5; = E everywhere in the plate, a solutlon for

these coefficients by analytical minimization of equation (20) is
Teasible and 1s given in appendix B. TIn the plastic solution, however,
it is necessary to introduce an appropriate unlaxial stress-strain
curve in order to evaluate equation (20) and effect its minimization
with respect to the six unknown ccoefficlents. Such a minimization by
analytical methods appears to be of prohibitlve difficulty. Conse-
guently, the course followed was to utilize a high-speed computing
machine (SEAC) to carry out the required minimization process numeri-
cally. Essentially, the procedure required repeated numerilical evalua-
tion of the strain-energy integral (eq. (20)) for systematically varied
sets of the unknown coefficients. An exposition of the computational
scheme 1s contained in appendix C.

RESULTS AND DISCUSSICN

The compressive stress-strain curve shown 1n figure 2, typical of
24S-T aluminum alloy, was used as the basic relationship between
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Oerr &nd €aff in the present investigation. The postbuckling

analysis was carried out for four different plate proportions, so
chosen that the corresponding values of buckling stress were as indi-
cated on figure 2; each plate was taken to have ite initial buckling
stregs 1n the elastic range.

As shown 1n sppendix B, the elastic buckling stress for the two-
element plate is given by
cY 3 b

when Poisson's ratio equals 1/2, and the critical unit shortening is

2
— fidel
e = LL(_.

The postbuckling state for each plate depends only on e/ecr, the

ratio of the applied unit shortening to the critical sirain. The final
results for loeds carried by two-element plates, with Polsson's ratio
equal to 1/2, are congidered to apply approximately to solid plates
having the same values of o, &and e/ecr. The proportions of the

equivalent solid plates are determined by the usual formule:
Gop = —— B (at\?
cr >y \ b
3(1 - o)

Displacements and Stresses

By means of the numericel minimization process described in
appendix C, approximations to the true values of the unknown coeffi-
cients wy7, U9, uy3, f, vp1, @and vy, in the expressions (21)

to (23) for the displacements w, u, and v were determined for each
of the four plate proportions considered and for various values of the
applied unit shortening ratio e/ecr. For a given unit shortening, the

minimization process involved calculation of the sitraln-energy expres-
sion (20) for systematically varied sets of the displacement coeffi-
cients, so chosen as to cause the energy to decrease in magnitude
continually. TFor a given unit shortening, estimates of the true dis-
placement coefficlents sre then provided by those values that yleld the
lowest energy value found. With the use of numerical minimization, the
accuracy of such estimetes is limited by the fact that, in the neighbor-
hood of its minimum, the energy is relatively insensitlve to changes in
the displacement coefficlents. Nevertheless, a reasonably consistent
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varlation of the final coefflcients with e/ecr was found and is shown

by the faired curves of figures 3 and L for the two extreme plate geom-
etries, plates 1 and 4, respectively. Also shown in these figures, for
comparison, are the coefflicients gilven by the elastic solution of
appendix B, which coneiders the same number of unknown cocefficlents.
These elastic coefficients constituted the initial values used in the
iterative process for minimizing the energy in the plastic range. As
can be seen from figures 3 and 4, the largest differences between the
elagtic and plastic displacements occur for the in-plane displace-
ments u and v; the deflection coefficient wyy 1is very nearly the
same for both the elastic and plastic cases.

From the values of displacements, stresses can be found by use of

equations (7). The latersl distribution of axisl stress 3., as deter-

mined by equation (10), is shown in figure 5(a) for three different
cross sectlons of plate 1 at a value of e/ecr of 3; similar distribu-

tions for plate 4, at a value of e/ecr of 6, are also shown in fig-
ure 5(b). These results for the two plates actuslly correspond to the

same unit shortening, since (ecr), = %(ecr>l- Figures 5(c) and 5(d)
show the distributions of average latersl stress By at several longi-

tudinal cross sections of each of the two plates. It may be of interest
to note that, in contrast to the results of figure 5, the corresponding
elastic solution of appendix B yields exiasl and lateral stress distribu-
tions (egs. (BlO)) that ere independent of the x- and y-coordinate,
respectively.

In the elastic solution, condltione of equilibrium in the x- and
y-direction are satlsfied exactly at each point of the plate. The
extent to which in-plane equilibrium is satisfled by the plastic solu-
tlon may be measured In & gross sense by checking the closeness of the
values of the resultant axial force at varlous lateral cross sections;
also, the leateral stress distributions may be examined to see whether
they produce essentially zerc resultant lateral force. The results of
such equilibrium checks are 1llustrated in figure 5, where the average
stress values esre indicated for each cross-gection distribution. It is
seen that, although the average lateral stress is close to zero in all
cases, there remains some discrepancy between the magnitudes of the
average axlial stress at the various stations. Based on the mean value
of average axial.stress for the three cross sections in each case, the
percentage spread between the largest and smallest values of average
axial stress amounts to 4.8 percent for plate 1 and 7.4 percent for
plate 4. It may be of interest, however, to compare these discrepancies
with those that would be obtained by calculating plagtic stresses on the
basgis of the elastlic displacements that were used in the first cycle of
iteration in the minimization process. The average axial-stress values
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obtained on this basis are indicated in figure 5 by the values enclosed
in parentheses. As can be seen, the spread between the largest and
smallest values of average axlal stress for each of the plates is sub-
stantial, 32.4 percent for plate 1 and 29.5 percent for plate 4. Thus,
a significant improvement was achieved by the minimizetion process.

The strain distributions of plates 1 and 4 and their varilations
with e/e.r were subjected to a detalled examination in order to deter-
mine whether plastic unloading ever occurred. It was found that, up to
the largest value of e/ecr considered in the present study, no such

unlcading did in fact cecur. That is, the magnitude of the effective
strain egppr 1n each face continuelly increased with increasing e at

all points in the plate where plestic yilelding occurred; at scme polnts
(for example, the midpoint of the loaded edge} €ery does decrease

immediately after buckling but this unloading occurs in the elastic
range.

Relation Between Average Applied Stress and Unit Shortening

The load-carrying capacity and the stiffness of a plate after buck-
ling are determined by the relationship between the average compressive
stress ogy &and the applied unit shortening. The load-carrying capacity
of the plate at a glven shortening is simply the product of the average
compressive stress and the cross-sectional area whereas the stiffness of
the plate after buckling is related to the slcpe of the curve of average
stress agalnst unit shortening.

As has been shown, the resultent axial force obtained in the present
solution varies somewhat, depending on the location of the cross sectlon.
An appropriate unique value of the average applied stress mey be most
conveniently determined by means of the followlng energy considerations.

The strain energy (eq. (20)), which was minimized for vaerious values
of e/e.p, must equal the total external work. Therefore,

2
U = 2t¢b \jge Oy G

whence

(24)

4a
a. = e
av de

<l

where the plete volume is V = Qtsz. Since the minimization process
described in appendix C ylelds values of U/EV directly, the use of
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relation (24) to determine oy, is quite convemient. (The same
relationship was used in the elastic analysis of reference 9.)

Figure 6 shows the variation of U/EV with e/e.,. for each of

the four plates investigated. The required differentiation of these
curves was effected by meens of the graphical procedure described in

reference 15, and the resultent curves of oy, &against e are shown

in figure 7 for the four plates. TFor comparison, the curves determined
by the elastic solution of appendix B are shown for each case.

It should be emphasized that these results are certeinly approxi-
mate by virtue, among other things, of the fact that only a limited
number of coefficients were used in the expressions for the displace-
ments. An estimate of the extent of the inaccuracy may be made by
comparing the essentlially exact relationship between average stress and
unlt shortening found by ILevy for the elastlc case with that given by
the approximaste elastic solution of appendix B, which considers the
same number of coefficients as were used in the plastic solution. This
comparison is made in figure 8, which shows Jgy/0cr @8 & function of

e/eqr for these two solutions. Thus, it 1s reasonable to expect that the
curves of figure 7 are reliable only up to values of e/ecr of about L;

this limiting velue 1s noted by tick marks on each of the four curves.

A reasonable procedure for correcting the curves of figure 7 would
be to reduce them at each value of e/eCr by the corresponding ratio

of the two curves of figure 8. This reduction has been made in figure 9;
the curves consgtlitute the final estimates of the present paper for the
relationshlip between average compressive stress and unit shortening for
the four plates studied.

An interesting feature of the results of figure 9 is that the
average compresslive stress carried by each plate dces not have a maxi-
mun value in the range of unit shortening considered. However, the lack
of definite mathematical maximums in the average compressive-stress—
unit-shortening curves of figure 9 should, perhaps, not be overempha-
sized in view of the flatness of these curves and the approximate nature
of the present solution. More significant is the fact that the curves
indicate load-carrying capacities substantially greater than those that
have been found experimentally for plates that do not conform to strailght-
edge boundary conditlions. Such test results (unpublished) have been
obtained by R. A. Anderson and M. S. Anderson of the langley laboratory
for plates supported laterally in a V-grooved fixture similer to that
used in the classical tests by Schuman and Back (ref. 16). Plates
supported by V-grooved filxtures are not, of course, consirained to have
gtraight (in-the-plane) side edges after buckling, and, in addition,
the V-grooved fixture does not entirely prevent out-of-plane displacements
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of the side edges once initial buckling takes place. Needham, in
reference 17, glves the test results found by a number of investigators
for the maximum strength of compressed square tubes. Again, the plate
elements of square tubes do not satisfy the boundery conditions of
gtraight side edges beyond buckling, and, as is remarked by Needham,
fallure occurs with passage of the buckle pattern through the corners.
A comparison between these test results and the results of the present
paper can be made by taking from figure 9 a nominal meximum average
stress opgy equal to the stress at the large unit shortening of 0.0l

(the highest unit shortening for which computations were carried out).
Figure 10 shows the relationship between Gmax/qcr and Gér/oby found

in this fashion from figure 9 and slso gives the corresponding curve
determined by test results on a variety of materials, including

245-T sluminum, for square tubes (ref. 17) and for plates in V-grooved
fixtures tested by Anderson and Anderson. (The results for both types
of tests fall essentially on a single curve.)

It appears, then, that maintaining straight-edge boundary conditions
leads to higher load-carrying capacities, as indicated by the results of
the present anaslysls. This conclusions i1s bolstered by the experimental
results found by Botman in reference 18, which are also shown in fig-
ure 10. Botman, continuing the investigations started by Besseling
(ref. 19), used a Jig that divided a wide plate into three strips by
means of a series of opposed knife edges running longitudinally. This
type of fixture represents more closely the boundary conditions of the
present Investigation than do the V-grooved flxtures or the square tubes
and, as can be seen from figure 10, leads to higher plate strengths. Of
course, the outside edges of the outer bays still do not conform to the
straight-edge condition; one may conjecture, then, that still higher
strengths would be achieved from tests on plates with additional bays.

Effective Width

The so-called "effective width" of plate can be readily calculated
from the curves of figure 9 by means of the relationship

e _ %av
b O’SS

where ogg 1s the stress obtained from the stress-strain curve for the
value of e that ylelds a given value of dgy- The variation of

be/b with e/eqr 1s shown in figure 11 and is compared with the effec-
tive width calculated on the basis of Ievy's "exact" elastic solution

for the square plate. This comparison shows that, at the higher unit
shortenings, the effective widths become somewhat greater than those
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given by elastic theory. The early dlp of the present results below
the elastic curve 1s & consequence of the fact that plastic strains
occur in the interior of the plate at unit shortenings that are still
in the elastic range.

CONCLUDING REMARKS

A theoretical analysis has been made of the behavior of a simply
supported, square flat plate with stralght edges compressed beyond the
buckling load into the plastic range. Approximate solutions were carried
out numerically for one materlal and for four different plate proportions;
the curves for average compressive stress against unit shortening thus
obtained were corrected in a rational fashion to account for the limited
nunmber of degrees of freedom used in the analysis.

The method of analysis, involving the spplicaetion of a variatiomal
principle in conjunction with & high-speed computing machine, may be
applied to plates with different boundary and loading conditions and of
different material properties. The number of degrees of freedom agsumed
in the displacement functlons may be increased, subject to the capacity
of the computing machine. The chief difficulty that was encountered in
the actual numerical sclution was the slowness of satisfactory convergence
to minimum energy values. The development of lmproved methods of effecting
numerical minimization of nonlinesr functlons of meny variables would be
highly desirable for future application of the method of analysis used in
this investigation.

Langley Aeronautical Iaboratory,
National Advisory Committee for Aeronsutics,
Iangley Field, Va., November 23, 195k.
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APPENDIX A
VERIFICATION OF VARIATTONAT, PRINCIPLE
The purpose of this sppendix is to show that the variational

condition

83U = 0 (A1)
where U is given by equation (20), is valid for finding & solutlon to
the present problem. The variation of U is taken with respect to
admissible variations in u, v, and w, that is, those that do not vio-
late the geometrical boundary conditions (12), (13), and (16). It will
be shown that the differential equations (ll) and the natural boundary
conditions (eqs. (14), (15), and (17)) are consequences of equation (Al).

If the strain-energy density

Caff
Jg Oerf deerr

is denoted by F(ex,ey,yxy), equation (20) may be written
b/2 ~b/2
U= tp J[‘ (Fg + Fp) dx dy
Jop/av-p/2
where the subscripts t and b refer to the top and bottom faces,

respectively. Then, the variation of U with respect to u, for
example, is

b/2 b/2
5.0 = e Jf (8.Ft + ByFp) dx dy (42)
-b/2"Y -b/2
Similar expressions hold for variations with respect to v and w.

Now,

_ OF oF OF
F = 5 eF & OF 5
By S, uwEx + 5 ey 5, Wiy (A3)
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and, egain, similar expressions hold for

5,F and B8,F.
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Since

dF = ggrr degpps 1t follows from equation (19) that

3F_

de,

9F_
aey
OF

Byxy

Ox

=Txy

T

/

From the strain-displacement relations (6), it follows that

Buey = 5u<§§> = g%(ﬁu)

Buey = 0

6u7xy

Hence

b/2 pb/2
Jfb/e‘jpb/a

[ ! =—(8u) + T
ox

[Xh < =(8u) + Ty g%(BuE] dx dy

After integration by parts and with the use of expressions (10),

/2w+£

variation becomes

b/2

-b/2

x=b

By Bu

X=~b

/
L (B B

b/2

/2

) du dx dy

(Ak)
xy a—(&u)}
the
y=b/2
T o) dx -
Txy Bu y=_b/2
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But, Bu=0 at x-= 2 <%ince u = ze
2

nlo’

at x = t%’). On the other

hand, du 1is arbitrary at y =:t%; hence, the condition &,U = 0
requires satisfaction of the boundary conditions

- ko) _
T}Cy <X,'_t§> =0

as well as of the equilibrium equation (1la),
ox dy

Similarly, calculation of 5,U leads to

b/2 y=b/2 b/2 x=b/2
5U=2tff Gy oV d.x+f Txy OV dy -

v Xy
-b/2 y=-b/2 -b/2 x=-b/2
b/2 pb/2 (35, oF
f <__y + — ) sv dx dy
~b/2" -b/2 \Oy ox
Hence, setting B&,U equal to zero requires satisfaction of equation (11Dp) :

oG, OF
oy ox

Also, sinece &v 1is arbltrary at x = t%, it follows that

’rzqr(i%’y) =0

On the other hand, by virtue of the straight-edge condition (eq. (13)),
8v must be constant at ¥y ='t%. Hence,

/
f:/z 7 (otg) &= 0

gince the congtant value of &v at each side edge may be arbltrary.

Thus far, it has been shown that the equilibrium equations (1ls)
and (11b), as well as the natural boundary conditions (14) and (15),
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are consequences of condition (Al). Tt will now be shown that the
remaining equilibrium equation (1lc) and natural boundary conditions (1T)
will follow from the condition &, U =

From equations (6),

dw 9
Bty b T Sy 3

1+
[\l iny
Q/
[\
(o4
t;

5 ¢ = Owd(ew) + h 2%(sw)
W Yt,b dy Oy 2 ay2

VXY,b dx Jdy By ox dx Oy

Hence,

f /2 (O PN-I =16 ( dw d(Bw
b/2 -b/2 J’;’bax 3% 't yb dy dy

w o(bw) , ow o(&w) - h 2
<X;Yt xyb> [Bx oy By ox ] (Uxt CTx'b>2 dx 2 *

2
(o~ e 5 (o, =) B

Through the use of relations (9) and (10) and after integration by parts,
the varliation becomes

b/2 3 d x=b/2 b/2
B v, My _@ 2
B U =-fnb/2 (thotx + 2tg ’n‘ X 3y + = . BSw xm-b/z b/2 <2t cxy LA Etf-r +
= -rb/2 =b/2 b/2 b/2
%-a&wywedx-f/r«xsal =/ dy-f/ e |7 s
¥y  ox y=-b/2 /2 T 9% |x=b/2 b/2 Oy |y=-b/2
/2 x=b/2 b/2 y=b/2 /2 pb/2
Jsiid 4; el < tply =5 +
f.b/z o & x=-b/2 T v/:b/e 3% | yoop/2 fb/E fb/E
02y + BEMX 52 aEM‘Y 85w dx dy

- 32y . )
Ethy S’E + h'thxy Sx 3y T 32 2 > ay Byz
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Now, if &, U is to venish for all admissible values of 8w, 3 B_w,
b'e

and & g—‘;, then 1t is readily seen that satisfaction of B,U =0

requires that

N&(“_‘%,y = Dg,(x,":%) =0

and

2w, Pty 2y (32 » P, pn %
52 Cney 52 '2tf<°xa_>£'+ Y2t axay>

Therefore, i1t has now been shown that all the natural boundary conditions
(eqs. (1h4), (15), and (17)) and the differential equations of equilibrium

(egs. (31a), (11b), and (1lc)) follow from the condition that the first
variation of the potential energy of the plate must vanish for all
admissible variations in the displacements u, v, and w.
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APPENDIX B
EIASTIC SOLUTION

The elastic postbuckling behavior of the two-element plate can be
obtained analytically by applying the Rayleigh-Ritz method to the
elastic counterpart of the variational problem formulated in the present
paper.

The strain energy of stretching and bending of the plate i1s glven
by equation (19) except that it is now understood that the relationships
between the components of stress and straln are equations (la) with the
local modulus E, replaced by Young's modulus E. Substitution of these
elastic stress-strain relations into equation (18) and integration to the
final strain state yleld

b/2 rb/2 Yy, &
=2 2 2 Xt
U5 “b/2 f_b/z (ex’“ Ty TSyt T

2
4
<%xb2 + eyb2 + €xp €y * —f%h—> dx dy (B1)

Since the displacements wu, v, and w can be related toc the strailns
through the large-deflection strain-displacement relations (6), the strain
energy can be written as a function of the unit shortening e and the
undetermined coefficlents appearing in the displacement expressions (21),
(22), and (23). As mentioned earlier, both the plastic and the elastic
solutions of the present paper are limlted to the determination of only
six of the unknown coefficients appearing in the displacement functions.
That is, the dlsplacements are assumed to be

\
u = -ex + b{uin + uyq cos 21%>sin 2nx
< 10 + U1 . oy
v = fy + b<%01 + vyq cOs gﬁg)sin g%l > (B2)
W = bwll cos %? cos Iy

b A

where e 1s the applied unit shortening and the remaining coefficients
are to be determined by epplication of the Raylelgh-Ritz method. The
assumed expression for w 18 exact at initlal buckiing for a square
plate and is assumed to be reasonably accurate in the early postbuckling
range.

T
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Through the use of relations (6) and (B2) in equatlion (Bl), the
strain-energy density can be integrated over the stress-carrying area
of the plate to give

g = % Bt b2 {ez - ef + 2 4 % 12(-e + ) + %[(Eﬁulo)z + <2nv01)2:| -
2
-Ti(_—g(ZTL’ulo + ET(VOl)W}_lz + 1—56-E2Itu3_'|_)2 + (EJW’]_]_)E:I -

2 2
%(Eﬂull + 2nv11)w11© + %(21‘(111_1_) (2nv11) + % fchwlll‘ + %(%1—) W12

(B3)

The conditione for obtaining the values of the coefficients that
minimize the strain energy for a given value of the unit shortening are

QU _ dU _ QU _ BU _ oU _ U _ g

df duio - dvpo1 B dujq - ov1y B oWy

After the operations indicated by the minimizing cornditions are performed,
the following six simultaneous equations are obteined for evaluating the
slx unknown coefficlents:

~

2
2(@man) + 2 @on) - 3= v® = 0 L@
%(2@]_1) + g(ZﬁV}_-L) - 1—2 wi1° = 0

wll 'Z—(-e + f) -

1 23‘(1110 + 2:‘(\"01
2 2

+ 2ruyq + anll) +

(%?)2 + % szll%] =0
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Solution of the first five of equations (B4) yields

N

>
f =8 o 2L 12y,.2
2 16
2XUyp = 27V = 1[iw e (BS)
10 0L~ 7M1 r
2.2
2nu = 271V ==y
11 11 3 11 J
Substitution of relations (B5) into the last of equations (BY) gives
(2 2
W11 l:‘e * %(ﬂbﬁ) e w112] =0 (26)
In general, wyj # O; hence,
L /xh\e . x2 2
-e + F{&=) + I = 0 B
e 3~Cb> V1L (B7)

Now, when w37 vanishes, the criterion for initial buckling is esteb-
lished; that is, the critical strain or shortening becomes

Cor = %(%)2 ()

and, in turn, the compressive buckling stress ls simply

-y

As & consequence of equation (B8), equation (B7) yields the nondimensional
center deflectlon of the plate as

W112 = %(e - ecr> (B9)

and, hence, the '8ix coefficlents are completely determined for any value
of the plate unit shortening and cross-section geometry.

By virtue of the results (B5) and (B9), the displacement expres-
sions (B2) can be substituted into the stress-displacement relations (7)
(with Eg = E) to obtain the stresses present in the faces of the two-
element plate. In terms of average stress (see relations (10)), the
results of this substitution yield L
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o

P S ;L.. _g__ + 1) - _E_.. - 1%V cos gﬁ_y.

UCI‘ 2 ecr €er b

C 1/ e 2

—3’—=———-1) cos 2 - (B10)
UCI' 2 ecr b

.

X - o

Ocr i,

It should be mentioned that, although the stress expressions (B1Q) were
obtained on the basis of two-element-plate geometry and = Polsson's ratio
of 1/2, a rederivation for the case of a solid plate, wlth an arbitrary
Poisson's ratio, ylelds the ildentical results for the stresses.

It is of interest to note thet the approximate elastic solution
(eqs. (B10O)) for the stresses turns out to satisfy the equilibrium equa-
tions (1la) and (11b) exactly at each point of the plate; the third
equilibrium equation (eq. (1lc)) is, of course, not satisfied. A measure
of the accuracy of the approximate elastic solution is afforded by
figure 8, which compares the approximate relationship found between
oav/ccr and e/ecy with the exact relationship found by ILevy.

Equations (B5) and (B9) determined in this appendix are used as
initial values in the minimizing procedure for determining the solution
to the plastic-plate problem. (See appendix C.)
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APPENDIX C
PLASTIC SOLUTION

The variational problem is convenlently formulated in nondimensional
terms as follows: ILet £ = 2x/b and 17 = 2y/b; and let

1 [Ceff
G(Feff) " ®J, Oerr d€err

Since the four quadrants of the plate behave ldentically, the energy
integral (20) may be modified into the nondimensional form

F = EiEbE _ fol /;l [G <€eff-[;> + G<€ef‘fb)jl dg dn (c1)

Here cgrs 15 glven by equations (8) in terms of e, €y and 7y,

which in turn are found from equations (6), (21), (22), and (23) to
depend only on the spatial coordinates £ and 71, on the applied unit
shortening e, and on the unknown nondimensional parameters

Ty envyy (c2)
f xh
b 11

The ratio %? fixes the magnitude of the critical shortening e,. and

hence specifies the plate geometry. The set of six nondimensional

parameters (C2) are to be so determined as to minimize F for given

£
b

values o and e.

Since analytical minimization of ¥ 1s not feasible when nonlinear
stress-strain relations are involved, recourse ls had to a numerical
minimization process in conjunction with the use of a high-speed computing
machine (SEAC). The minimization process was effected by means of,
essentially, the so-called "method of steepest descents." (See, for
example, refs. 20 and 21.)
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The basic idea of the procedure may be described In general terms
as follows: Consider a function F(xl,x2,...xn). The set of

n independent parameters may be convenlently denoted by the n-component
vector x; (1 =1,2,3, .. .n). The value of x; that minimizes F

is sought. An initial triel vector xi(o) is assumed, and the gradient
E » 1s calculated at xi(o). The direction - SF is

X3 aXi
then the direction of steepest descent of the function F; the func-

tion F[%i(o)-agzi} is then evaluated for varlous positive values
X1

of & in an effort to find the value & +that minimizes F{%i(o)-5%£é]-

of F, that is,

When this value of & 1is found (presumsbly, approximately), a new direc-
tion of steepest descent is determined by evaluation of the gradient of

F at the point xi(l) = xi(o) -8 %ELI}i(O{]' The process is continued
Xi

until satisfactory convergence 1s obtained to the lowest possible value

of F. 1In the present problem, the six parameters in the set (eq. (C2))

play the role of the components of the vector xj.

In tHe application of the method of steepest descents, the basic
procedure outlined above was modified in certain respects. Filrst of =11,
each evaluation of F was performed approximately by means of numerical
integration. Bach face of the quarter plate was divided into a grid of
100 squares, the integrand in equation (Cl) was computed at each grid
point, and the integral was evaluated by applying Simpson's rule twice -
once for the integration in the E-direction and once for the n-direction.
For this calculation, the function G was represented, plecewise, by
polynomials determined from the stress-strain relationship of figure 2.

The evaluation of the gradient of F was performed on the beasis of
a8 finite-difference approximation to each of the six partial derivatives

required. Thus, the determination of the six components of neces-

oF
%1
sitated seven evaluations of F - one at the particular get of starting
values of the independent variables and one each for a small increment
in one of the six varisbles.

In any glven cycle, the value of & in the starting point x; - & %E—
X
1
of the succeeding cycle was found by passing & parsbolas through the three
points F(0), F(8), and F(28) glven by the values of F at x;,

X3 -9 QE—, and x; - 20 SE—. Here & was chosen to be of some conven-
X1 X1

ient magnitude, preferably of the order expected for 5.

'
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It is pointed ocut in reference 20 that, in practical application,
the method of steepest descents tends to furnish successive approxima-
tions to the minimizing vector that zigzag toward the true minimum
rather than approach 1t in a smooth fashion. Consequently, the following
procedure was introduced in an attempt to speed up convergence: After
two successive cycles of minimization in the direction of the negative
gredient, & third cycle of a different nature was inserted. TIn this
extra cycle, minimization was performed not in the direction of the
negative gradient, but rather in the direction determined by the differ-
ences between the lagt-obtained approximations to the unknowns and the
approximaetions of two cycles before. Thus, a round of three successlve
approximations to the minimum vector proceeded as follows:

AF
1 n; pind A5 (%, 7); minimi B (T
(1) Given =x4"; fin i(%i >, nimize F[}i ~ (ke ) to
. ntl _ . n _§ AF n
find B&,; obtain x4 = X3 - Oy ——;{%i ).

(2) Repeat step (1), starting with x37+L; this procedure gives
n+2 ntl _ g AF ntl
Xq =X Ont1 xy <Xi >

(3) Iet Sy = xin - xin+2; minimize F<#1n+2—asi> to obtailn

- BpepS1-

(4) Repeat steps (1), (2), and (3) as many times as are necessary
to obtain satisfactory convergence to the minimizing value of xj.

It may be remarked that in practice the quantities %E— and Sy were

i
normalized; that is, each component of a set %E— or S; was divided
1

by the absolute value of the largest component.

It 1s clear that a tremendous amount of numerical calculation i1s
involved in the applicatlion of thils procedure to the present problem;
only very high computing speeds make such a procedure feasible.

For each value of ﬁ? and e, the initial values assumed In the

iteration process were taken from the elastic solution of appendix B.
Convergence to the minimum energy level was considered satisfactory if
several successive cycles yielded the same value of energy to within
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four significant figures. About thirteen cycles of iteration, involving
approximately 35 minutes of computing time for the SEAC, were generally
required for convergence. In several instances, particularly at the
highest unit shortenings, convergence was found to be lmpracticably slow;
in these few cases, the minimum energy level was estimated by evaluating
it for values of the displacement coefficients extrapolated from curves
such as are shown in Tigures 3 and 4. The final plots for energy against
unit shortening obtained for the four plates are shown in figure 6.

It is of interest that the total difference in energy between the
first and last cycles of ilteration for eny one case was flways very small
(of the order of 1 percent). Consequently, as far as the energy is
concerned, a failr estimate could be found on the basis of the elastic
displacement coefficients. However, ss 1s discussed in the body of the
present paper, a reasonably sccurate estimate of the stress distribution
requires application of the minimizatlion process.
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Figure T7.- Variation of average compressive stress with unlit shortening
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Figure 8.- Comparison of approximste and exsct elastic solutions for the
average compressive stress carrlied by a buckled plate.
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Figure 10.- Comparison of experimental and calculated results for com-
pressive strength of flat plates.
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